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Abstract

Log linear and logit models that have been suggested for studying differential item functioning

(DIF) are reviewed, and loglinear formulations of the logit models are given. A polynomial loglinear

model for assessing DIF is introduced which incorporates scores on the matching variable and item

responses. The polynomial loglinear model contains far fewer parameters than loglinear models

which treat the matching variable and item response as nominal. Compared to logit models that have

been presented for investigating DIF, the polynomial loglinear model is easier to generalize to the

case of more than two groups and more the two response categories, and can model more complex

forms of DIE The use of DIF methodology to investigating whether common items in the common-

item equating design are functioning differently across test forms is discussed. Examples are given

of using the polynomial loglinear model to investigate DIF for a test containing dichotomous and

polytomous items, and for investigating DIF for common items in a common-item nonequivalent

groups equating design.

Aclawwledgement. The authors thank Mary Pommerich and Ron Cope for helpful comments on

an earlier version of this paper, and thank Judy Spray for providing the data used in one of the

examples.
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Application of a Polynomial Log linear Model to Assessing Differential Item Functioning

for Common Items in the Common-Item Equating Design

There are many procedures a researcher may use to examine the validity of a test, so as to prevent

bias from inadvertently affecting a sub-group of examinees the test is intended for. Procedures of this

type are part of the process of construct validation. One aspect of investigating the validity of a test

for various groups of examinees is the investigation of the test items for differential item functioning.

Differential item functioning (DIF) is said to exist when an item is functioning differently for two

or more groups of examinees, within the population the test is intended for. DIF manifests itself

by differential response to an item based on the group an examinee belongs to, when conditioned

on the latent variable being measured by the test the item is a part of. Differential item functioning

is defined conditioned on the latent variable measured by the test. This is in contrast to differences

in responding to an item among groups when averaged across levels of the latent variable. These

marginal differences in item performance may reflect legitimate differences between the groups on

the latent variable measured by the test (denoted impact), and do not necessarily represent DIF.

The first part of this paper presents a definition of DIF and reviews loglinear and 'logit models

used for assessing DIF. Loglinear formulations of logit models that have been suggested for studying

DT are presented.

The second part of this paper presents a polynomial loglinear model for assessing DIF which

incorporates numerical scores for the item response variable and conditioning variable. An example

using the polynomial loglinear model for investigating DIF on a test with both dichotomous and

polytomous items is given.

The third part of this paper discusses applying DIF methodology to investigating whether

common items in a common-item equating design are functioning differently across test forms. In

the common-item equating design the forms of a test to be equated are administered to different

groups along with a common set of items. For common-item equating to provide valid results it

is important that the common items function the same on all test forms. DT techniques can be

used to investigate whether common items are functioning differently on different forms of a test.

An example is presented applying the polynomial loglinear model discussed in the second part of

the paper to investigate DIF for common items in a common-item nonequivalent groups equating
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design.

Definition of DIF

The data used to investigate DIF for a particular item consists of three variables: 1) an item

response variable (Y), 2) a group variable (V), and 3) a matching variable (Z). It is assumed in this

paper that the matching variable and item response variable are categorical rather than continuous

(the group variable is also categorical). The data used to investigate DIF for a particular item are

then contained in an /xJxK table, where there are I categories for the item response, J groups,

and K categories for the matching variable.

There is no DIF for the item in question if Y and V are conditionally independent given Z.

Conditional independence of Y and V given Z can be expressed as

Pr(Y = y, V = 1 Z = z) = Pr(Y = Y Z = z) Pr(V = v I Z = z) (1)

for all y, z, and v. Another way to express the conditional independence of Y and V given Z is

Pr(Y =YIZ=z,V= = Pr(Y = y 1 Z = (2)

for all y, z, and v. The equivalence of Equations 1 and 2 is called the Fundamental Lemma of

Measurement Invariance by Meredith and Millsap (1992).

In this paper Z is considered to be an observable variable, in which case the condition repre-

sented by Equation 2 is referred to as observed conditional invariance (Millsap and Everson, 1993).

DIF defined using an observed matching variable may not correspond to DIF defined using the

latent variable measured by the items as the matching variable (the true matching variable). The re-

lationship between DIF defined using the true matching variable and an observed matching variable

is discussed by Holland and Thayer (1988), Zwick (1990), and Meredith and Millsap (1992).

Let milk be the expected count for item response category i, group j, and matching variable

category k. Conditional independence of Y and V given Z is equivalent to the conditional odds

ratios
Mjkini+1,j+1,k

eijk 1< i< I, 1< j< J
mi+i,j,kmij+i,k

(3)

being equal to 1 for all k. If any of the conditional odds ratios ei jk differs from 1 then DIF is said to

exist. Uniform DT is said to exist when some Oijk differ from 1 and for each i and j, Oijk = Oijk'

for all k k'. DIF that is not uniform is called nonuniform DT.
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As an example of how to interpret an odds ratio consider the case of two groups and two item

response categories. Item response category 1 represents a correct response and item response

category 2 represents an incorrect response. Let PijIk = Mijk/Nk, where Nk is the number of

examinees with a matching variable score in category k, so pip, is the probability of observing

an examinee in group j with an item response in category i conditioned on the matching variable

score being in category k. The odds of having a correct response versus an incorrect response for

examinees in group 1 with a matching variable score in category k is the conditional probability of

a correct response for examinees in group 1 having a matching variable score in category k divided

by the conditional probability of an incorrect response for examinees in group 1 having a matching

variable score in category k. This odds ratio is given by

pllikApiiik + pnik) Milk=
P211k) P2I1k M21kiNk m2lk

(4)

Similarly, odds of having a correct response versus an incorrect response for examinees in group 2

with a matching variable score in category k is

P12Ik I (P12Ik P221k) P12Ik MI2k/Nk = MI2k

P221k/(P121k + P22110 P22Ik M22kiNk M22k
(5)

The value of 011k in Equation 3 is the ratio of the odds of having a correct versus incorrect response

in groups 1 and 2 for matching variable category k (Equation 4 divided by Equation 5):

MIlk/M21k MI1kM22k
ellk =

M12k/M22k M2IkM12/c
(6)

In the case of two groups and two item response categories only the one conditional odds

ratio given in Equation 6 is needed to describe the relationship between group and item response

at each level of the matching variable. If dick = 0 then group and item response are independent

for matching variable category k. If 011k > 1 then the odds of getting a correct versus incorrect

response is greater for group 1 than group 2 for matching variable category k, and if 011k < 1

then the odds of getting a correct versus incorrect response is greater for group 2 than group 1 for

matching variable category k. With more than two groups or more than two categories of item

response more than one odds ratio is needed to describe the relationship between group and item

response (Equation 3).
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It is sometimes more convenient to use the log of the odds ratios in Equation 3 given by:

log(0iik) = log(mijk) log(mi+i, j+i,k) log(mi+1, j,k) log(mu+i,k) (7)

for 1<i <I,1< j < J. The values in Equation 7 are called the log-odds ratios. The log-odds

ratios are symmetric around zero, so a positive and negative log-odds ratio of the same magnitude

indicate the same degree of association in opposite directions. No DT exists if all the log-odds

ratios in Equation 7 are equal to zero.

Loglinear and Logit Models for Studying MY

A similar procedure is used to test for DIF in each of the loglinear and logit models to

be discussed. In each case there are three models fit to the data: 1) a model corresponding to

nonuniform DIF, 2) a model corresponding to uniform DT, and 3) a model corresponding to no

DT. The no DIF model is nested within the uniform DIF model, and the uniform DIF model is

nested with the nonuniform DIF model.

The likelihood ratio chi-squared statistics for the nonuniform and uniform DT models are

used to test for nonuniform DIF. Under the null hypothesis that the uniform DT model holds, the

difference in the likelihood ratio chi-squared statistics between the uniform and nonuniform DIF

models is asymptotically distributed as a chi-square random variable with degrees of freedom equal

to the difference in the number of parameters between the two models (call this difference df). For

a level of significance p, the null hypothesis that the uniform DIF model holds versus the alternative

hypothesis that the nonuniform DT model holds is rejected if the difference in the likelihood ratio

chi-square statistics between the uniform and nonuniform DT models is greater then the upper p

percentage point for the chi-square distribution with 4, degrees of freedom.

To test for uniform DIF the likelihood ratio chi-squared statistics for the uniform and no

DT models are used. Under the null hypothesis that the no DIF model holds, the difference in the

likelihood ratio chi-squared statistics between the no DIF and uniform DIF models is asymptotically

distributed as a chi-square random variable with degrees of freedom equal to the difference in the

number of parameters between the two models (df.). For a level of significance p, the null hypothesis

that the no DT model holds versus the alternative hypothesis that the uniform DT model holds is

rejected if the difference in the likelihood ratio chi-square statistics between the uniform DT and

9
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no DIF models is greater then the upper p percentage point for the chi-square distribution with dfi,

degrees of freedom.

Log linear Models

The saturated loglinear model for the three-way table of item response category (Y) by group

(V) by matching variable category (Z) is (Mellenbergh, 1982):

log(muk) xr +47 +Arkz Arir (8)

One constraint is placed on each of the parameters A.r, Alf to identify the model (for example,

AI/ 0). Constraints are also placed on the A.ry (I + J 1 constraints, for example

xr; = A,Tv = 0 for all i, j), Arkz (I + K 1 constraints, for example A = Xriz = 0 for all

k), and ykz (J + K 1 constraints, for example A = A.yiz = 0 for all j, k). There are

I J + I K + JK I J K + 1 constraints placed on the Arjrz, for example Arivkz = z =

= 0 for all i, j,k. The total number of free parameters is 1+ I 1+ J 1+ K 1+ I J (I +

J 1)+IK (1+K 1)+JK (J+K 1)+IJK (1J+IK+JK I J K+1) = IJK.
The number of free model parameters equals the number of cells in the table (this is a saturated

model). The model in Equation 8 has no residual degrees of freedom (the model fits any data

perfectly).

The log-odds ratios in Equation 7 for the model in Equation 8 are

xr+vi, _ xu+,log
mi+i,j,kmi,j+i,k

1YVZ 1YVZ Y V Z
'"i,j+1,k (9)

The log-odds ratios given in Equation 9 will generally differ from zero and will not be constant

across levels of the matching variable category. Thus, the DIF implied by the model in Equation 8

is nonuniform DIF.

Mellenbergh (1982) identifies two nonsaturated models nested within the model given in

Equation 8 that are of interest in the analysis of DIF one for uniform DIF and one for no DIE

The uniform DIF model is obtained by eliminating the A.rjrz terms from the model of Equation 8:

log(muk) +Ak Ariv Arkz xrkz (10)

10
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with the same constraints on the parameters as were indicated for the model in Equation 8. The

log-odds ratios in Equation 7 for the model in Equation 10 are

g
Mijeni+1,j+1,k YV YV YV YVlo =1 1 1

i
mi+i,j,kmi,j+i,k

The log-odds in Equation 11 will in general differ from 1 but do not differ across levels of the

matching variable. Thus, the model given by Equation 10 implies uniform DIF.

The no DIF model presented by Mellenbergh (1982) is obtained by eliminating A.Tiv from the

model in Equation 10:

log(muk) = µ + AY ± Alf + xikz + xJ'kz (12)

The log-odds ratios in Equation 7 for the model in Equation 12 will all be zero. Thus, the model in

Equation 12 implies no DIF for the item.

To test for nonuniform DIF the procedure described above is used with the model for nonuni-

form DIF given by Equation 8 and the model for uniform DIF given by Equation 10. The degrees of

freedom for testing the null hypothesis of uniform DT versus the alternative hypothesis of nonuni-

form DT is (I 1)(J 1)(K 1). To test for uniform DIF the procedure described above is

used with the model for uniform DT given by Equation 10 and the model for no DT given by

Equation 12. The degrees of freedom for testing the null hypothesis of no DIF versus the alternative

hypothesis of uniform DIF is (I 1)(J 1).

Logit Models

Mellenbergh (1982) notes that for dichotomous items logit models equivalent to the loglinear

models in Equations 8, 10 and 12 for the purposes of studying DIF can be used. The response variable

for the logit models is log(mlik/m2ik), where there are only two categories of item response.

In the case in which there are numeric scores associated with the matching variable categories

and/or item response categories, this information can be used to create more parsimonious logit

(and loglinear) models for studying DT. Let the scores associated with the item response categories

be r1, r2, , r , and let the scores associated with matching variable categories be si , 52, , sic

It is assumed the categories are arranged such that r1 < r2, . , < rI and si < 52, , <

In the case of a dichotomous item response Swaminathan and Rogers (1990) present logit mod-

els where linear functions of the matching variable score are substituted for the nominal matching
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variable effects in the logit models presented by Mellenbergh (1982). This allows for a nonsatu-

rated logit model for nonuniform DIF (Mellenbergh's logit model for nonuniform DIF is a saturated

model). The model presented by Swaminathan and Rogers (1990) can be written as

log

(in 1 jk V-) = a() '1" X -r- alsk + azisk
M2jk

(13)

where there is one constraint put on the A.1 (for example, AI' = 0), and one constraint is put on the

a21 (for example, a21 = 0). The logit model in Equation 13 is equivalent to the following loglinear

model (Agresti, 1990, pages 152-153)

log(miik) = A.r_Fxr+xif +Ariv+A.rkz+fiisk+ YijSk (14)

The same constraints are put on the parameters AT, Ay, Alf, Aikz, and AV as were put on the

corresponding parameters for the model in Equation 8. One constraint is placed on the Ni (for

example, /31 = 0) and (I 1)(J 1) constraints are placed on the yii (for example, yu = Yi1 = 0

for all i, j). For the loglinear model in Equation 14, unlike the logit model in Equation 13, it is

possible that the number of item response categories could be greater than 2. The log-odds ratios

in Equation 7 for the model in Equation 14 are given by

=x7±,,r+v,
j` i,log

±(Yi j Yi+1, j+1 Yi +1, j Yi, j+1)Sk (15)

The log-odds ratios in Equation 15 are linear functions of the matching variable score and therefore

represent nonuniform DIE

Eliminating the yi j terms from the model in Equation 14 gives

log (m iik) = , u Ar -I- A l + xif +47 +Ay +Ask.

The log-odds ratios in Equation 7 for the model in Equation 16 are

=x,v+xr+v,,,+,_,,,i+v,_
A .17+log

mi+1,/,xmi,i+i,k

(16)

(17)

Equation 17 may be different from zero but it is constant for all values of the matching variable

score. Consequently, the model in Equation 16 represents uniform DIF. The log-odds ratios in

12
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Equations 17 and 11 have the same form since the only difference between the models in Equations

16 and 10 are the interaction terms involving the item response and matching variable which cancel

out when computing the odds ratio. Even though the form of the log-odds in Equations 11 and 17

are the same the estimates of the log-odds in the two equations will differ since they are based on

different models.

Eliminating the Ai? from the model in Equation 16 gives

log(muk) = µ + + A.)/ + 4 + xykz + fiisk (18)

The log-odds ratios in Equation 7 for the model in Equation 18 are all zero. Consequently, the

model in Equation 18 represents no DIF.

The models in Equations 14 and 16 are used to test for nonuniform DIF (the test for nonuniform

DIF has I + J 1 degrees of freedom). The models in Equations 16 and 18 are used to test for

uniform DIF (the test for uniform DIF has (I 1)(J 1) degrees of freedom).

For the case in which there are two groups but more than two item response categories Miller

and Spray (1993) suggest using a logit model with group as the response variable. This logit model

can be written as

log

(Milk = alp + aisk + a2ri +a3skri .
milk

The logit model in Equation 19 can be written as the following loglinear model

log(muk) = + ± + 4 + Arz + jsk +132iri + Yiskri

(19)

(20)

The same constraints are put on the parameters ALA.),, q, and Arkz as were put on the corresponding

parameters for the model in Equation 8. One constraint is put on each of the parameters f31j, 132J

and yi (for example, fill = 1321 = y1 = 0). For the model in Equation 20 the log-odds ratios in

Equation 7 are

murnki+1,i+1,k
log = lP2,j+1 /2.0(ri+1 ri)sk (21)

mi+i,j,kmiti+i,k

The log-odds ratios in Equation 21 will in general be different from zero and are a linear function of

the matching variable score'. Consequently, nonuniform DIF is implied by the model in Equation

20.

13
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Eliminating the terms involving yi from the model in Equation 20 gives

log(miik) = + +A. + + xiiv+ fiusk + fivi

The log-odds ratios in Equation 7 for the model in Equation 22 are

log
miikmi+1,i+1,k

= 132.0(ri+1 ri)
mi+i,j,knzi,j+i,k

(22)

(23)

The log-odds ratios in Equation 23 may differ from zero, but do not vary with the matching variable

score. Consequently, uniform DIF is implied by the model in Equation 22.

Eliminating the p2; from Equation 22 gives

log(miik) = + ± + +xliv + PljSk (24)

The log-odds ratios in Equation 7 for the model in Equation 24 will all be zero. Consequently, no

DIF is implied by Equation 24.

The models in Equations 20 and 22 are used to test for nonuniform DIF (the test for nonuniform

DIF has J 1 degrees of freedom). The models in Equations 22 and 24 are used to test for uniform

DIF (the test for uniform DIF has J 1 degrees of freedom). Using the models in Equations 20,

22 and 24 to study DT is called Logistic Discriminant Function Analysis (LDFA) by Miller and

Spray (1993).

An advantage of using the logit form of the models (Equations 13 and 19) as opposed to the

loglinear form of these models (Equations 14 and 20) is that there are far fewer parameters to

estimate in the logit formulation. A possible advantage of using the loglinear formulation of the

models as opposed to the logit formulation is that the loglinear models can be generalized to deal

with more than 2 item response categories (I > 2) and more than 2 groups (J > 2) without the

complications of having to deal with a polytomous dependent variable. The model in Equation 13

can only be used when there are two item response categories, and the model in Equation 19 can

only be used when there are two groups.

The next section presents a loglinear model in which the scores on the item responses and

matching variable are used in a way that results in far fewer model parameters than there are in the

loglinear forms of the logit models in Equations 14 and 20, or the loglinear models presented in

Equations 8, 10 and 12.
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A Polynomial Log linear Model for Studying DIF

Log linear models with polynomial terms involving test and item scores (polynomial loglinear

models) have been used in several measurement applications. Examples include smoothing of test

score distributions (Holland and Thayer, 1987; Kolen, 1991), equating (Rosenbaum and Thayer,

1987; Hanson, 1991; Livingston, 1993; Little and Rubin, 1994), and testing for differences in score

distributions among groups (Hanson, 1996). This section presents a model for the three-way table

of item response, group, and matching variable that can be used to investigate DIF. The model is

analogous to polynomial loglinear models that have been used in other measurement applications.

In the loglinear models in Equations 8, 10, and 12 the item response variable and matching

variable are treated as nominal. When there are scores associated with the item response categories

and the matching variable categories the following loglinear model can be used

di d2 d2

10g(Mijk) = + ±E Olgj4 +E132hji,i
h ,g

rh
g=1 h=1 g=1 h=1

(25)

where di < K, d2 < I. As in Equation 8 a constraint is put on the A.y. There are no constraints

placed on the 13 parameters. A subset of the Yghj are assumed to be nonzero, and the rest are assumed

to be zero. If it is assumed Yg.h. j 0 0 for particular values g*, h* and j* then it is also assumed

that yg.h. ji 0 0 for all j' j*. Consequently, the number of Yghj 0 0 is Jd3 for some positive

integer d3. The value of d3 is equal to the number of the di x d2 possible Yghj in each group that

are specified to be nonzero. The value of d3 is not directly related to the values of di and d2. For

example, d3 is not the sum of di and d2. Note that the models in Equations 14 and 20 are not special

cases of the model in Equation 25.

The log-odds ratios in Equation 7 for the model in Equation 25 are

d2

log = /32,h; ) frih+,

h=1

d1 d2

+ E E (Ygh,j+1 Yghj) (ri+1 4. (26)
g=1 h=1

Equation 26 represents nonuniform DIF. The DIF given in Equation 26 is constrained relative to the

DIP given by the saturated loglinear model (Equation 9). The model in Equation 25 is a nonsaturated

loglinear model that allows for nonuniform DIF. Comparing Equation 26 to Equations 15 and 21 it

15
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is seen that the loglinear model in Equation 25 allows for more complicated forms of DIF than the

models in Equations 14 and 20.

The constrained version of the model given in Equation 25 which implies uniform DIF is

d2 d2
g hlOgrn = + E filgist E RR + E E yghskri

g=1 h=1 g=1 h=1
(27)

The model in Equation 27 differs from the model in Equation 25 by not having the ygh parameters

differ for the different groups. The difference in the number of parameters between the models in

Equations 27 and 25 is d3(J 1). The log-odds ratios in Equation 7 for the model in Equation 27

are
miikrni+1,i+i,k

log = h , j + 1 P2hj) (rP+1 rP) (28)
h=1

The log-odds ratios in Equation 28 do not vary with the matching variable score which implies

uniform DT.

The constrained version of the model given in Equation 27 which implies no DIF is

di d2 di d2
a h

+ g h10g(Mijk) = A + Ail + E filgpS1 + E P2hri 'I- z_s E yghskri .

g=1 h=1 g=1 h=1
(29)

The model in Equation 29 differs from the model in Equation 27 by not having the 02h parameters

differ for the different groups. The difference in the number of parameters for the models given in

Equations 29 and 27 is d2(J 1). The log-odds ratios in Equation 7 for the model in Equation 29

are all zero implying no DT.

The models in Equations 25 and 27 can be used to test for nonuniform DIF (the test for uniform

DT has d3(J 1) degrees of freedom). The models in Equations 27 and 29 can be used to test for

uniform DIF (the test for uniform DIF has d2(J 1) degrees of freedom).

Note that the log-odds in Equations 21 and 23 for the LDFA model are of the same form as the

corresponding log-odds in Equations 26 and 28 for the polynomial loglinear model when d2 = 1

and d3 = 1 with the only nonzero ygh being yll (in this case the value of d1 does not affect the

log-odds). While the form of these log-odds ratios are the same in this case, the models are different

(and not nested), and the estimated cell counts for the two models will not be the same. Even when

the log-odds in Equations 26 and 28 have the same parametric form as the log-odds in Equations

16
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21 and 23, the parameter estimates will differ since the models are different. Consequently, the

log-odds functions, while both linear, will differ for the polynomial loglinear and the LDFA models.

Choosing a Model

Using the models in Equations 25, 27 and 29 involves choosing values for d1 and d2, and

choosing which of the Yghj to make nonzero. The values of d1, d2, and which Yghj to make nonzero

are chosen based on the model in Equation 25, and are used for the models in Equations 27 and 29

in testing for uniform and nonuniform DIF.

A model selection procedure presented by Haberman (1974) can be used for choosing a model

in the form of Equation 25 from a set of possible models (different values of d1, d2, and nonzero yghi).

To apply Haberman's (1974) procedure it is assumed that a set of q models have been identified

(All, M2/ Mq) where model Mi_ 1 is nested within model Mi, i = 2, . , q (M1 is the simplest

model, and Mq is the most complex model). If G? is the likelihood ratio chi-square statistic for model

Mi then for i = 2, . . . , q, G1_1 is the likelihood ratio statistic for testing the null hypothesis

Hi_1 versus the alternative hypothesis H1, where Hi is the hypothesis that model Mi holds. If the

hypothesis Hi is true then the statistics G?'_1 for i = q, q 1, . . . , i* + 1 are asymptotically

independent and have chi-square distributions with wi degrees of freedom, where wi is equal to the

difference in the number of parameters of models Mi and Mi_1. For a level of significance p, with

p* = 1 (1 p)11W-1), the probability that G? , i = q, q 1, . . . , i* +1 exceeds C, the upper

p* percentage point for the chi-square distribution with wi degrees of freedom is asymptotically no

greater than p. A simultaneous test of the null hypotheses Hi, i = q 1, q 2, . . . , 1, is to reject all

hypotheses Hi such that i < i where is the largest i such that G1_1 G2 > C (if G?_i < C

for all i let i' = 1). With a specified value of p, this hypothesis testing procedure would allow one to

eliminate from consideration models Mi, i < . It gives no guidance for choosing from among the

models Mi, i > although typically model Mi, (the simplest model) is chosen. Smaller values of

p make it harder to reject the null hypothesis of the simpler model and therefore favor the selection

of simpler models.

The selection procedure of Haberman (1974) requires that the models being considered form

a nested sequence. Especially in the case of non-dichotomous items it is possible that the set of

models under consideration do not form a nested sequence. In that case the Haberman model

selection procedure is not directly applicable. A series of model comparisons could be performed,

17



13

but the tests would no longer be independent and the error rate given by the Haberman procedure

will no longer be accurate. The example presented later uses a modification of the Haberman

procedure to select a model.

In applied settings it may not be realistic to use a model selection procedure for each item. A

more realistic procedure may be to select a common model for all items with a specific number of

score categories, perhaps based on past experience.

Matching Variable

A typical matching variable is a test score consisting of the sum of the item scores. The issue

discussed in this section is whether to use as the matching variable the sum of the item scores

including the studied item, or the sum of the item scores excluding the studied item.

Several authors have used theoretical justifications to conclude that a matching variable that

is the sum of item scores should include the studied item (Holland and Thayer, 1988; Zwick, 1990;

Meredith and Millsap, 1992). If there is a latent variable under which local independence holds

for the item scores, then a test score that excludes the studied item score will be conditionally

independent of the studied item score given the latent variable. Under this condition Meredith and

Millsap (1992) show that DIF will exist when the test score excluding the studied item score is

used as a matching variable even if there is no DIF in either the studied item score or the test score

when the latent variable is used as the matching variable. Under these conditions, even though

there is no DIF when using the latent variable as the matching variable, DIF will exist when the test

score excluding the studied item score is used as the matching variable. Only under very special

conditions will including the studied item in the test score alleviate this problem (e.g., the Rasch

model holds for the item responses, Holland and Thayer, 1988). Consequently, theoretical analysis

suggests the problem of DIF existing when using an observed matching variable when no DIF

exists using the ideal latent matching variable will occur in many practical situations whether or not

the test score used for the observed matching variable includes or excludes the studied item score.

However, simulation studies conducted by Donoghue, Holland, and Thayer (1993) and Zwick,

Donoghue, and Grima (1993) have indicated that for the Mantel- Haenszel procedure this effect is

smaller when the studied item is included (in these studies item responses were simulated using the

3-parameter logistic item response model and the partial credit model).

When the item category scores are equally spaced these scores can be taken to be 0, 1, . . . , I 1,
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where there are I item response categories. Let m111 be the expected count corresponding to item

response category i, group j, and matching variable category k, where the matching variable is

the total test score excluding the score for the studied item. Let treijk be the expected counts in the

three-way table where the matching variable is the total test score including the score for the studied

item. If there are I item response categories, J groups, and K score categories for the test score

excluding the studied item, then the table containing the expected counts miik has I x J x K cells

and the table containing the expected counts neiik has I x J x (K + I 1) cells. The expected

counts niTik can be written in terms of the expected counts mijk as

* = irni,j,k-i+1 1 <k< K +i 1
Intik k < i,k > K + 1 .

(30)

For example, consider group 1 and item response category 2. Assuming item response categories

are ordered by the category scores, then item response category 2 corresponds to an item score of 1

(m2, j,k is the expected number of examinees who obtain a score of 1 on the item, are in group j, and

receive a total test score of k 1). From Equation 30, ml`ik = m2,1,k_1 for 2 < k < K + 1. This

is because any examinee who obtained a score of 1 on the item would have a test score including

the item that was one greater than his or her test score excluding the item. For k = 1, Equation 30

gives n411 = 0 since if an examinee obtained a score of 1 on the item, the test score including this

item could not be zero. Similarly, milk = milk for 1 < k < K. For k > K, milk = 0 because if

an examinee obtains a score of 0 on the item, he or she cannot obtain a test score larger than the

maximum score possible on the other items.

Equation 30 shows that the expected counts in the table corresponding to the test score including

the studied item can be written in terms of the expected counts in the table corresponding to test score

excluding the studied item. Even though there are I J(I 1) more cells in the table corresponding

to the test score including the studied item, that table will have I J(1 1) cells with structural zeros

(by definition the cell count must be zero). Including the studied item score in the test score creates

a table with more cells but no more information. A loglinear model fit to the table corresponding

to the test score excluding the studied item would give the same results as a loglinear model fit to

the table corresponding to the test score including the studied item as long as the structural zeros

in the table were constrained to be zero by the model. Different results would be obtained if the

model fit to the table corresponding to the test score including the studied item allowed all the cells
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in the table to have non-zero expected counts (which would result in non-zero fitted counts for cells

in which the fitted count by definition should be zero).

Consequently, in the present setting, the estimated counts and model fits would be the same

whether the studied item is included in the test score or not (as long as structural zeros are preserved

when including the item score in the test score). Given these considerations and the lack of

evidence regarding the relative performance of loglinear models (as opposed to the Mantel-Haenszel

procedure) in investigating DIF when the item score is included versus excluded from the test score,

the matching variable used in the examples in this paper is the test score excluding the item score.

Example

An example of using the polynomial loglinear model to study DIF is given using the same data

used for the example in Miller and Spray (1993). The data consists of responses of 1976 examinees

to a 27-item experimental mathematics test. The test consisted of 12 multiple-choice items (items

1 through 12), 9 gridded-response items (items 13 through 21), and 6 open-ended items (items 22

through 27). The multiple-choice and gridded-response items were scored dichotomously (one for

a correct response, and zero for an incorrect response). The scores on the open-ended items were

0, 1, 2, . . . , k, where k = 3, 3, 4, 4, 5, 6 for items 22 through 27, respectively. DIF was investigated

for males versus females. There were 1005 male and 971 female examinees in the data set. One

male examinee included in the data analyzed by Miller and Spray (1993) was dropped from the

analyses reported here because all of his responses to the polytomous items were missing. The

matching variable used for each item is the sum of the item scores on the remaining items (the test

score excluding the studied item).

The first step in fitting the loglinear models given in Equations 25, 27, and 29 is determining

the number of parameters to use in the models (the values of d1, d2, and d3). A modified version

of the Haberman procedure described above is used to select values of d1, d2 and d3. Models are

considered with values of d1 ranging from 1 to 6, values of d2 ranging from 1 to the maximum

score on the item (I 1), and d3 ranging from 1 to 5 for polytomous items and from 1 to 6 for

dichotomous items. For dichotomous items the only possible value of d2 is 1. The five interaction

parameters considered for polytomous items were Yll, Y12, y21, Y13, and Y31. A model with d3 = /

would include only the first 1 of these interaction parameters. For example, if d3 = 1 then the only

interaction parameter in the model would be yn . If d3 = 3, then the three interaction parameters in
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the model would be ni, y12, and y21. The six interaction parameters considered for dichotomous

items were Yn 9 Y21, Y319 Y411 Y51 and Y61

For the dichotomously scored items (items 1 through 21) choosing a model involves choosing

values of d1 and d3 (the only possible value of d2 is 1). Instead of applying the Haberman procedure

to one sequence of nested models, the Haberman procedure was applied twice once for d3 and

once for d1. An error rate of .005 was chosen for each of the two separate Haberman procedures

resulting in in an overall error rate of at most .01 (by the Bonferroni inequality) for the two procedures

taken as a whole. When selecting d3, d1 was set equal to the maximum value (6). The Haberman

procedure was applied to a sequence of models given by d3 = 1, 2, . . . , 6. The overall level of

significance chosen was .005, so the value of p* used for each individual test of the nested models

was 1 (1 .005)1/5 = .001.

When selecting d1, d3 was set equal to the value determined in the first step. The Haberman

procedure was applied for the sequence of models corresponding to d1 = d3, d3 + 1, . . . , 6. The

overall level of significance was chosen to be .05, so the value of p* used for each individual test

of the nested models was 1 (1 .005)1/5 = .001 (there are a maximum of 6 models).

For the polytomous items (items 22 through 27) values must be chosen for d1, d2 and d3.

The Haberman model selection procedure was applied three times once for d3, once for d2,and

once for d1. An error rate of .003 was chosen for each of the three separate Haberman procedures

resulting in in an overall error rate of at most .009 (by the Bonferroni inequality) for the three

procedures taken as a whole. When selecting d3, d1 and d2 were set equal to their maximum values

(6 for d1, and I 1 for d2). The Haberman procedure was applied to a sequence of models given

by d3 = 1, 2, . , 5. The overall level of significance chosen was .003, so the value of p* used for

each individual test of the nested models was 1 (1 .003)1/4 = .00075.

When selecting d2, d1 was set equal to 6 and d3 was set equal to the value determined in the first

step. The Haberman procedure was applied to a sequence of models given by d2 = 1, 2, . . . , I 1.

For an overall level of significance of .003, the value of p* used for each of the individual tests of

the nested models was 1 (1 .003) 1/(/-2).

When selecting d1, the values of d2 and d3 were set equal to the values chosen in the previous

steps. The Haberman procedure was applied to a sequence of models given by d1 = 1, 2, . . . , 6.

For an overall level of significance of .003, the value of p* used for each of the individual tests of
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the nested models was 1 (1 .003)1/5 = .0006.

Examples of applying the model selection procedure to items 7 and 23 are presented in Table

1. The top part of Table 1 gives results for item 7 (a dichotomous item). A nested sequence of

six models were compared for d3 and dl. The first six lines gives results for d3, and the next six

lines gives the results for d1. Chi-square statistics for the models and their degrees of freedom and

p-values are presented in the three columns under the heading "Model." Chi-square statistics for

comparing adjacent models and their degrees of freedom and p-values are presented in the three

columns under the heading "Comparison of Model to Previous Model." For d3 the first two models

to be compared are those given in the first two rows. For both these models d1 = 6 and d2 = 1.

The model in the first row has d3 = 6 and the model in the second row has d3 = 5. The chi-square

statistic for testing the null hypothesis that the model with d3 = 5 holds against the alternative

hypothesis that the model with d3 = 6 holds is given as 1.1890. The value of p* chosen for each

of the tests of consecutive models is .001. Consequently, for the first test (d1 = 5 versus d1 = 6)

the null hypothesis of the simpler model is not rejected. None of the tests is significant at the .001

level, so a value of d3 = 1 is chosen (this is indicated in the table by the value of p* being next

to the model with d3 = 1). The next six models correspond to values of di from 1 to 6 (with

d2 = d3 = 1). The first test that is significant at the .001 level is the test for di = 2 versus d1 = 3.

Consequently, the model selected is d1 = 3, d2 = d3 = 1.

For item 23 separate selection procedures were used for d3, d2, and d1. For item 23 the first five

lines in Table 1 correspond to models with five different values of d3. For these models d1 and d2

were fixed at their maximum values of 6 and 3, respectively. The level of significance used for the

tests of consecutive models was .00075. The first model comparison was for d3 = 4 versus d3 = 5.

The chi-square statistic for this test is 21.3489 with 2 degrees of freedom, which is significant at

the .00075 level. Consequently, the simpler model with d3 = 4 is rejected, and the value of d3 = 5

is chosen. Next, three models corresponding to three values of d2 are compared (with d1 = 6 and

d3 = 5). In this case a value of d2 = 3 is selected. Finally, there are six models corresponding to

d1 = 6, 5, . , 1 (with d2 = 3 and d3 = 5). A value of di = 4 is chosen. Thus, for item 23 the

model with d1 = 4, d2 = 3, and d3 = 5 is used to test for uniform and nonuniform DIF.

For the dichotomous items, d3 was selected to be equal to 1, and d1 was selected to be equal

to 4 for all items except items 7 and 13, where d1 was selected to be equal to 3. The models chosen
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for the polytomous items are given in Table 2. For all the polytomous items, d1 = 4 and d2 = I 1

(the maximum score on the item). Varying numbers of interactions terms were chosen for the

polytomous items. For example, for polytomous item 24 only one interaction parameter between

item response and score level was chosen. For polytomous item 27, four interaction parameters

were chosen.

The values of d1, d2, and d3 chosen were used in fitting the models in Equations 25, 27, and

29 for each item. Likelihood ratio chi-square statistics for testing for uniform and nonuniform DIF

were computed. When reporting results, three levels of significance are used 0.05, 0.01 and 0.05

/ 27 = 0.00185 (a Bonferroni adjustment).

Significance levels for tests of uniform and nonuniform DIF are shown in Table 3 for all items.

For uniform DIF, thirteen items reached the .05 level of significance, ten items reached the .01 level

of significance, and eight items reached the .00185 level of significance. For nonuniform DIF, two

items showed significant nonuniform DIF at the .05 level, and one of these items (item 15) did

not show significant uniform DIE For Item 15 nonuniform DIF was indicated, but the bias was

balanced to cancel out the effects against each group and this item exhibited no uniform DIF.

The logistic discriminant function analysis (LDFA) results using the models in Equations 20,

22 and 24 are presented in Table 4. The results in Table 4 differ slightly from the results in Table

3 of Miller and Spray (1993) because the analysis reported here used a matching variable that did

not include the studied item, whereas Miller and Spray (1993) used a matching variable that did

include the studied item. In addition, the analysis reported here used one fewer observation. Still,

the chi-square values in Table 4 and the chi-square values in Table 3 of Miller and Spray (1993) are

quite similar and there is no pattern in the direction of the differences (in some cases the chi-square

in Table 4 is higher and in some cases the chi-square given in Table 3 of Miller and Spray is higher).

For these data the effect of including versus excluding the studied item in the matching variable

does not seem to be large for the LDFA model.

There is little difference between the LDFA and polynomial loglinear models in terms of the

tests for uniform DIF. The polynomial loglinear model test for nonuniform DIF was significant at

the .05 level for only items 15 and 26. The LDFA model test for nonuniform DIF was significant

for ten items at the .05 level, for five items at the .01 level, and for two items at the .00185 level. For

these data the LDFA model indicated more nonuniform DIF than the polynomial loglinear model.
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For some of the dichotomous items the log of the odds ratios in Equation 6 were graphed as

a function of test score (excluding the studied item) to explore the DIE' trends across score levels.

Log-odds for the observed counts and fitted counts for the polynomial loglinear and LDFA models

for nonuniform DIF were compared. In the graphs of the log of the odds ratios in Equation 6 group

1 is females, group 2 is males, item response category 1 is a correct response, and item response

category 2 is an incorrect response. Log-odds ratios above zero indicate that the odds of a correct

response was greater for females than for males, and log-odds ratios below zero indicate the odds

of a correct response was greater for males than females. Figures 1 through 6 contain odds-ratios

graphs for dichotomous items in which significant nonuniform DIF was indicated for the LDFA

model but not for the polynomial loglinear model (items 16, 4, 5, 6, 8, 20).

The log-odds in Figures 1 through 6 will be linear functions of the test score for both the LDFA

model and the polynomial loglinear model. The log-odd function for the LDFA and polynomial

loglinear models for the case of nonuniform DIF are given in Equations 21 and 26, respectively.

It can be seen from Equation 21 that the log-odds for the LDFA model are a linear function of the

matching variable score. The value of d3 was set to one for the polynomial loglinear models used

for all the dichotomous items (yi ij were the only nonzero yghj). In this case Equation 26 is a linear

function of the matching variable score.

The graph of the log-odds ratio as a function of test score (excluding the studied item) is

presented in Figure 1 for item 16. In Figure 1, the observed log-odds lie primarily above the line

indicating no DM, which is the horizontal line at 0.0. If an item had no DIF, the observed data

would approximate this line. The fitted log-odds ratios for the LDFA model have a larger slope

than the fitted log-odds ratios for the polynomial loglinear model. The slope of the fitted log-odds

for the polynomial loglinear model is small, consistent with the fact that significant nonuniform

DIF was not indicated for this model.

Log-odds plots for items 4, 5, 6, 8, and 20 are presented in Figures 2 through 6, respectively.

Like item 16, significant nonuniform DIF was indicated by the LDFA model for these items, but

not by the polynomial loglinear model. For all these items the slope of the fitted log-odds is larger

for the LDFA model than for the polynomial loglinear model.

There was only one item, item 15, for which the test for nonuniform DIF was significant for

the polynomial loglinear model but not for the LDFA model. For one other item, item 7, the test
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for nonuniform DIF was very near to being significant for the loglinear polynomial model but not

for the LDFA model. Graphs of the log-odds ratios for items 15 and 7 are given in Figures 7 and

8. For these items the slope of the fitted log-odds is larger for the polynomial loglinear model than

for the LDFA model.

The test for nonuniform DIF was significant for the last 4 polytomous items (items 24 through

27) using the LDFA model, whereas only for item 26 was the test for nonuniform DIF significant

using the polynomial loglinear model. For the polytomous items there would be multiple log-odds

ratio plots for each item (one plot for each pair of adjacent item response categories) analogous to

the single plots for the dichotomous items given in Figures 1 through 8. Because of the sparseness

of the data it is not practical to plot the the multiple observed log-odds as a function of matching

variable score level for the polytomous items.

Another way to graphically display the results for the polytomous items (that can also be used

for the dichotomous items) is to plot the means of the conditional distributions of item response

given matching variable score. Figure 9 gives a plot of the observed conditional item score means

and fitted conditional item score means from the polynomial loglinear model of uniform DIF as a

function of test score (excluding the studied item) for item 23. The scores on item 23 range from

0 to 3. The lines in Figure 9 give the mean item score as a function of test score. The conditional

means are presented separately for males and females. If there were no DIF the conditional means

for males and females would be identical. Figure 10 gives the observed and fitted conditional means

using the polynomial loglinear model of nonuniform DT for item 23. The observed conditional

means for females are generally below those for males in the middle of the matching score range.

The model for uniform DIF (Figure 9) appears to fit the data well. This is consistent with the results

in Table 3 which indicated significant uniform DT, but not significant nonuniform DIF for item 23.

Observed and fitted conditional means using the polynomial loglinear model for uniform DIF

are presented in Figure 11 for item 26. The plot of observed and fitted conditional means using the

polynomial loglinear model for nonuniform DIF is presented in Figure 12. For matching variable

scores above around 19 the means for males are higher than the means for females in Figure 12,

whereas for matching variable scores below 19 the opposite is the case. The difference in means

between males and females is larger for scores above 19.
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Examining Common Items for DIF

In the common-item equating design each of the forms of a test used in equating contains a set

of items common to all forms. The items common to all forms are called common items, and the

items on each form that are unique to that form are called non-common items. The common items

may be included with the non-common items in the score reported to the examinee (an internal set

of common items) or not included in the score reported to the examinee (an external set of common

items). The forms are administered to different groups of examinees, at possibly different times (for

example, forms administered in different years). The groups receiving the various test forms can be

randomly equivalent (the common-item random groups equating design) or chosen in such a way

that they are not randomly equivalent (the common-item nonequivalent groups equating design).

The result of an equating is a conversion from the scores on the new form to the scores on the old

form. If there is more than one new or old form, multiple equatings of pairs of forms are performed.

For more information on the common-item equating design see Kolen and Brennan (1995).

For common-item equating to provide valid results it is important that the common items

function the same in both the new and old test forms. A common item could function differently on

two forms due to the different contexts in which it was embedded (different non-common items),

or the different times it was administered (the topic of the item might be more salient at one time

versus another). One definition of the items functioning the same for both forms is that there is

no association between item response and the form on which the item was administered when

conditioned on the score for all common items. DIF analysis can be used to assess whether this

association exists or not. Instead of the focal and reference groups being majority and minority, or

male and female, as is typical in DIF studies, the groups are those who took, on separate test dates,

one of the two forms in which the common item set is embedded.

While both common and non-common items are used in equating, the non-common items are

not used in performing a DIF analysis of the common items. Typically, the sum of the common-item

scores would be used as the matching variable in a DIF analysis of the common items.

When the groups taking the two forms are not randomly equivalent an item may exhibit DIF

solely due to the differences between the two groups (the item exhibits traditional DIF for the two

groups). Instead of the item functioning differently due to the different administrations (embedded

in different forms and given on different dates), the item is functioning differently due to differences
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among the groups. If a common item exhibits DIF there is no way of knowing to what extent the

DT is due to the different groups or the different administrations. Groups taking different forms

will typically not be greatly disparate, and will likely be less disparate than groups examined in

traditional DIF analysis, so it may be reasonable to attribute DIF observed for a common item to

a difference in how the item is functioning on the two administrations, rather than a difference in

how the item is functioning in the groups taking the two forms.

Example

An example will be presented of applying the polynomial loglinear model to investigate DT

for common items in a common-item nonequivalent groups equating design. The data used were

from a 150 item multiple choice test (all items were dichotomous). The focus was on the 1993

form (administered in 1993). The 1993 form had a link to the 1992 form (administered in 1992

with 37 internal common items also present in the 1993 form) and the 1991 form (administered in

1991 with 38 internal common items also present in the 1993 form). There were 1521 examinees

who took the 1991 form, 1450 examinees who took the 1992 form, and 1375 examinees who took

the 1993 form.

For the 1993/1991 data, d1 was set equal to four for each studied item after roughly examining

how many parameters would be needed to model each item. For each item the likelihood ratio

chi-square statistic for testing the null hypothesis that the nonuniform DT model with d1 = 4 holds

versus the alternative hypothesis that the saturated model holds (which is a goodness of fit test of

the nonuniform DIF model) was not significant at the .05 level of significance. This indicates that

using d1 = 4 provides an adequate fit to the data.

Three different significance levels were used for the analysis 0.05, 0.01, and 0.05 / 38 =

0.0013 (a Bonferroni adjustment). The results for all items are presented in Table 5. For uniform

DIF, a total of thirteen items were found to be significant at the .05 level and beyond, ten were

significant at the .01 level and beyond, and five were significant at the 0.0013 level of significance.

For nonuniform DT, only two items were significant at the 0.01 level. Both items that exhibited

nonuniform DM also exhibited uniform DIF at the 0.0013 level of significance.

All items that showed significant DIF at the 0.01 level of significance were examined by

looking at the actual content of the items (the item stems) and their responses (alternatives). Two

of the items for which uniform DM was indicated at the 0.0013 level of significance had syntactic
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differences between the two forms. For one of the items, "... NOT..." (all capital letters) was used

in the stem while for that item on the other form "...not..." (underlined lower case) was used. For

the other item, the word "vs." in the stem was written with a period at the end of the abbreviation

on one form, and on the other form it was just written as "vs" without a period at the end. No

other noticeable syntactic differences were found for the other items which had significance levels

less than 0.01. There should be no syntactic differences in an item between forms (every common

item should be absolutely identical between forms). These differences were not caught by test

development staff who checked for the items being identical on the two forms.

Items that are functioning differently on the two test forms may have an adverse effect on the

equating. To study the effect of the inclusion of the two items with syntactic differences on equating

the equating analysis was re-done excluding those two common items. Before proceeding, it was

necessary to determine if these two syntactically incorrect items need to stay in the common item

pool for the sake of content specifications. The common item pool should be a mini-version of the

test, and the balance in the range of content of the common items should be as similar as possible

to the entire set of items used to compute the score reported to examinees. In this particular test all

items fell into one of four content areas. Two of the content areas had large numbers of items; the

other two content areas had small numbers of items. The items that exhibited the large amount of

uniform DIF, and had syntactic problems, came from content areas with larger numbers of items.

Consequently, the items could be removed and no harm would be done to the balance of content in

the set of common items.

The equating was re-done excluding these two items as common items. In the recomputed

equating the two items are considered non-common items. Tucker and Levine Observed Score

equating functions were computed (Kolen and Brennan, 1987; Kolen and Brennan, 1995). As an

indication of the difference in the equatings the number of examinees whose scale scores would

change if the two items were not used as common items was calculated (the scale scores range from

0 to 150). For the Tucker equating, 23 out of the 1375 examinees who took the new form would

have a score change of 1 point (either increase or decrease). For the Levine equating, scores for

310 examinees would have changed by one point. Given that the maximum score change is one

point on a 151 point scale and the number of examinees with a one point change is not large, it is

concluded that not including these two items as common items does not have an important effect
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on the equating results.

For the 1993/1992 data, d1 was also set equal to four for each studied item. For each item

the likelihood ratio chi-square statistic for testing the null hypothesis that the nonuniform DIF

model with d1 = 4 holds versus the alternative hypothesis that the saturated model holds (which

is a goodness of fit test for the nonuniform DIF model) was not significant at the .05 level of

significance. This indicates that using d1 = 4 provides an adequate fit to the data.

Again, three different significance levels were used for the analysis 0.05, 0.01, and 0.05 / 37

= 0.0014 (a Bonferroni adjustment). The results for the 1993/1992 equating are presented in Table

6. For uniform DT, a total of eight items were found to be significant at the 0.05 level and beyond,

four were significant at the 0.01 level and beyond, and none were significant at the 0.0014 level

of significance. For nonuniform DIF, only two items were significant at the 0.05 level. Neither of

these items exhibited significant uniform DIF.

As in the 1993/1991 equating study, all items that showed significant DIF at the .01 level of

significance (and beyond) were examined by looking at the actual content of the items (the item

stems) and their responses (alternatives). None of the items manifested any apparent reasons why

they should perform differently in the two different forms.

The results indicated more DIF for the 1993/1991 equating items than for the 1993/1992

equating items. A plausible ad-hoc explanation is that since some of the items had somewhat political

and time related content, there could be less bias when the time interval between administrations is

smaller as any effect of time related content would be reduced.

Discussion

The focus of the investigation of DIF is the conditional association between item response and

group given a matching variable. This association can be modeled by loglinear models, or logit

models using either the item response or group as the dependent variable.

Loglinear and logit models for studying DIF were presented and loglinear formulations of the

logit models were given. A polynomial loglinear model was introduced which incorporated scores

for the matching variable and item response categories. This model contains far fewer parameters

than loglinear models that treat the matching variable and item response as nominal. Unlike the logit

models, the polynomial loglinear model accommodates the case of more than two item responses

and more than two groups. An advantage of the polynomial loglinear model is that it provides a
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non-saturated model of nonuniform DIF that is able to detect more complex forms of DIF than logit

models that have been suggested (Equation 26 versus Equations 15 and 21), although it is possible

that the logit models could be expanded to model more complex forms of DIE

An example of using the polynomial loglinear model to study DIF was given using data from

Miller and Spray (1993). The results of the polynomial loglinear model were compared to the LDFA

method given by Miller and Spray (1993). The methods were fairly consistent in their identification

of uniform DIF. The LDFA model indicated more nonuniform DIF in the items than the polynomial

loglinear model.

The results presented for the polynomial loglinear and LDFA models cannot be used to conclude

which model is best for the data used, or even if either model is providing accurate results, since

the amount of DIF in the items is unknown. The purpose here was to provide an example of the

application of the polynomial loglinear model and a comparison of the results to those obtained

from the LDFA model. The absolute and relative performance of the methods could be studied

using simulated data.

The use of DIF techniques for studying whether common items in the common-item equating

design function differently on different test forms was discussed. In this application of DT tech-

niques items are studied for differential functioning across different forms in which they are embed-

ded and different test dates on which those forms are administered. It is important in common-item

equating that the common items function the same in the forms being equated, and DIF techniques

offer a useful set of tools for studying this question. An example was given using the polynomial

loglinear model to study DT in common equating items. In the example presented, two items for

which the test for uniform DT was significant were found to have syntactic differences between

the forms.

It would be useful to develop confidence bands as in Miller and Spray (1993) for use in

graphical displays such as those displayed in the figures in this paper. The usefulness of confidence

bands is demonstrated in Miller and Spray (1993) where they are used to identify regions of the

matching variable for which DT is present. Confidence bands and significance tests both have the

property that smaller amounts of DIF can be detected as significant with larger samples sizes. This

can be a problem when the DT detected as statistically significant is not practically important.
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Item 23
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Table 1.

Haberman Procedure for Items 7 and 23.

Comparison of model to
Model previous model p-value for

dl d2 d3 chi-square d.f. p-value chi-square d.f. p-value choosing a model

6 1 6 138.7686 156 0.8354

6 1 5 139.9576 158 0.8458 1.1890 2 0.5519
6 1 4 140.1484 160 0.8690 0.1908 2 0.9090

6 1 3 142.6550 162 0.8607 2.5066 2 0.2856
6 1 2 147.0201 164 0.8251 4.3651 2 0.1128
6 1 1 150.1766 166 0.8053 3.1566 2 0.2063 P* = 1 (1 - .005)1/5 = .001

6 1 1 150.1766 166 0.8053

5 1 1 150.7209 168 0.8265 0.5443 2 0.7618
4 1 1 151.7422 170 0.8393 1.0213 2 0.6001

3 1 1 162.4350 172 0.6877 10.6929 2 0.0048 p* = 1- (1 - .005) 1/5 = .001

2 1 1 189.3293 174 0.2021 26.8943 2 <0.0001

1 1 1 2085.8584 176 <0.0001 1896.5291 2 <0.0001

6 3 5 299.1114 322 0.8154 p* = 1 - (1 - .003)1/4 = .00075

6 3 4 320.4603 324 0.5451 21.3489 2 <0.0001
6 3 3 336.5308 326 0.3321 16.0705 2 0.0003
6 3 2 338.0063 328 0.3399 1.4754 2 0.4782
6 3 1 344.8563 330 0.2757 6.8500 2 0.0325

6 3 5 299.1114 322 0.8154 p* = 1 - (1 - .003) 1/2 = .0015

6 2 5 1281.0891 324 <0.0001 981.9777 2 <0.0001
6 1 5 1635.3832 326 <0.0001 354.2941 2 <0.0001

6 3 5 299.1114 322 0.8154

5 3 5 299.4243 324 0.8326 0.3129 2 0.8552
4 3 5 299.8021 326 0.8482 0.3778 2 0.8279 p* = 1 - (1 - .003) 15 = .0006
3 3 5 339.1881 328 0.3235 39.3860 2 0.0000
2 3 5 361.7141 330 0.1107 22.5260 2 <0.0001
1 3 5 1926.8813 332 <0.0001 1565.1672 2 <0.0001
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Table 2.

Polynomial Log linear Models Used for Open-Ended Items.

Number of Parameters

Item dl d2 d3

22 4 3 4

23 4 3 5

24 4 4 1

25 4 4 2

26 4 4 1

27 4 6 4

Note: d1=4, and d2 = d3 =1 were used for all dichotomous items (items 1-21),
except for items 7 and 13 where d1 = 3.
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Table 3.

Polynomial Log linear Model Results for Miller & Spray Data.

Multiple-
Choice

Uniform DIF Non-Uniform DIF

d.f. chi-square d.f. chi-square

1 1 10.769 0.00103 *** 1 0.022 0.88316
2 1 28.181 0.00001 *** 1 1.777 0.18251
3 1 0.120 0.72931 1 0.268 0.60437
4 1 5.917 0.01499 * 1 1.467 0.22588
5 1 31.676 0.00001 *** 1 0.687 0.40735
6 1 0.763 0.38239 1 0.676 0.41106
7 1 11.277 0.00078 *** 1 3.839 0.05007
8 1 44.426 0.00001 *** 1 1.223 0.26879
9 1 26.096 0.00001 *** 1 0.207 0.64883
10 1 1.265 0.26073 1 0.262 0.60852
11 1 0.179 0.67220 1 0.016 0.89998
12 1 17.280 0.00003 *** 1 0.039 0.84399

Gridded
13 1 0.025 0.87368 1 0.001 0.97814
14 1 0.030 0.86241 1 1.212 0.27094
15 1 1.278 0.25820 1 6.260 0.01235 *
16 1 8.061 0.00452 ** 1 0.155 0.69348
17 1 3.824 0.05053 1 1.359 0.24364
18 1 0.018 0.89427 1 2.423 0.11958
19 1 3.256 0.07114 1 1.008 0.31529
20 1 6.558 0.01044 * 1 0.478 0.48936
21 1 0.145 0.70332 1 0.625 0.42913

Open-Ended
22 3 1.772 0.62106 4 7.298 0.12097
23 3 18.229 0.00039 *** 5 6.947 0.22463
24 4 5.555 0.23491 1 2.208 0.13732
25 4 6.208 0.18412 2 0.830 0.66045
26 4 15.057 0.00458 ** 1 6.098 0.01354 *
27 6 13.382 0.03735 * 4 7.318 0.12002

* <= .05, ** <= .01, *** <= (.05 / 27)
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Table 4.

Logistic Discriminant Function Analysis Results for Miller & Spray Data.

Uniform DIF Non-Uniform DIF

d.f. Chi-square d.f. Chi-square <
Multiple-
Choice

1 1 9.598 0.00195 ** 1 1.389 0.23857

2 1 24.595 0.00001 *** 1 1.155 0.28240

3 1 0.059 0.80843 1 2.562 0.10948

4 1 5.322 0.02106 * 1 8.151 0.00430 **

5 1 31.648 0.00001 *** 1 3.924 0.04760 *

6 1 0.825 0.36387 1 4.437 0.03517 *

7 1 13.314 0.00026 *** 1 0.216 0.64189

8 1 43.711 0.00001 *** 1 8.276 0.00402 **

9 1 27.397 0.00001 *** 1 1.289 0.25616

10 1 1.122 0.28955 1 1.246 0.26428

11 1 0.143 0.70578 1 0.112 0.73795

12 1 19.614 0.00001 *** 1 0.256 0.61315

Gridded
13 1 0.094 0.75918 1 3.141 0.07634

14 1 0.009 0.92439 1 1.193 0.27479

15 1 1.202 0.27299 1 0.008 0.92743

16 1 6.471 0.01097 * 1 4.694 0.03028 *

17 1 3.809 0.05098 1 0.332 0.56465

18 1 0.012 0.91453 1 0.032 0.85901

19 1 5.216 0.02238 * 1 0.003 0.95462

20 1 3.489 0.06177 1 4.626 0.03150 *

21 1 0.076 0.78290 1 0.126 0.72258

Open-Ended
22 1 1.683 0.19457 1 0.174 0.67647

23 1 17.086 0.00004 *** 1 3.662 0.05566

24 1 3.449 0.06329 1 8.189 0.00421 **

25 1 1.468 0.22572 1 5.956 0.01467 *

26 1 6.813 0.00905 ** 1 14.169 0.00017 ***

27 1 5.214 0.02241 * 1 12.318 0.00045 ***

* <= .05, ** <= .01, *** <= (.05 / 27)
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Table 5.

Polynomial Log linear Model Results for the 1993/1991 Equating Data.

Item

Uniform DIF Non-Uniform DIF
d.f. chi-square p < d.f. chi-square p <

1 1 0.351 0.55333 1 0.902 0.34212
2 1 2.340 0.12610 1 0.003 0.95570
3 1 3.725 0.05360 1 1.267 0.26031
4 1 1.005 0.31609 1 0.200 0.65494
5 1 7.656 0.00566 ** 1 0.046 0.83047
6 1 15.761 0.00007 *** 1 0.062 0.80312
7 1 5.965 0.01460 * 1 0.000 0.99691
8 1 0.881 0.34798 1 2.239 0.13456
9 1 0.646 0.42140 1 0.927 0.33572
10 1 3.019 0.08228 1 1.454 0.22787
11 1 0.145 0.70345 1 0.231 0.63048
12 1 9.378 0.00220 ** 1 2.930 0.08697
13 1 0.059 0.80771 1 1.005 0.31601
14 1 15.918 0.00007 *** 1 0.053 0.81859
15 1 5.355 0.02067 * 1 3.426 0.06417
16 1 3.534 0.06010 1 1.342 0.24663
17 1 1.634 0.20116 1 1.003 0.31648
18 1 5.064 0.02443 * 1 1.126 0.28857
19 1 0.620 0.43117 1 0.031 0.86057
20 1 0.176 0.67469 1 0.208 0.64831
21 1 0.219 0.63999 1 0.114 0.73533
22 1 9.056 0.00262 ** 1 1.060 0.30321
23 1 0.000 0.98877 1 0.380 0.53749
24 1 2.610 0.10616 1 2.513 0.11291
25 1 7.707 0.00550 ** 1 1.465 0.22613
26 1 7.672 0.00561 ** 1 0.292 0.58902
27 1 1.890 0.16918 1 1.196 0.27403
28 1 1.265 0.26070 1 0.007 0.93382
29 1 95.091 0.00001 *** 1 8.596 0.00337 **
30 1 24.799 0.00001 *** 1 7.184 0.00735 **
31 1 3.255 0.07122 1 0.972 0.32408
32 1 0.291 0.58980 1 0.219 0.63959
33 1 15.929 0.00007 *** 1 0.549 0.45860
34 1 2.788 0.09497 1 1.178 0.27771
35 1 0.784 0.37600 1 1.695 0.19298
36 1 0.002 0.96228 1 0.013 0.91011
37 1 1.613 0.20402 1 2.020 0.15525
38 1 1.493 0.22175 1 0.200 0.65452

<= .05, ** <= .01, *** <= (.05 / 38)
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Table 6.

Polynomial Log linear Model Results for the 1993/1992 Equating Data.

item

Uniform DIF Non-Uniform DIF

d.f. Chi-square P < d.f. Chi-square p <

1 1 5.209 0.02248 * 1 0.664 0.41532

2 1 7.616 0.00578 ** 1 2.941 0.08634

3 1 1.198 0.27376 1 0.012 0.91144

4 1 1.801 0.17962 1 2.738 0.09798

5 1 0.280 0.59663 1 0.172 0.67793

6 1 0.237 0.62672 1 0.007 0.93153

7 1 0.349 0.55443 1 0.908 0.34053

8 1 0.828 0.36274 1 0.108 0.74214

9 1 9.076 0.00259 ** 1 3.238 0.07196

10 1 0.410 0.52216 1 0.565 0.45223

11 1 2.688 0.10114 1 0.000 0.99542

12 1 0.181 0.67060 1 0.688 0.40675

13 1 0.097 0.75553 1 0.578 0.44710

14 1 3.161 0.07543 1 1.346 0.24600

15 1 0.452 0.50118 1 3.973 0.04623 *

16 1 0.341 0.55918 1 0.635 0.42564

17 1 6.886 0.00869 ** 1 1.602 0.20563

18 1 3.904 0.04816 * 1 3.015 0.08251

19 1 1.476 0.22433 1 0.111 0.73919

20 1 0.605 0.43657 1 0.807 0.36892

21 1 1.680 0.19494 1 0.110 0.74022

22 1 0.738 0.39025 1 1.284 0.25708

23 1 0.971 0.32445 1 1.460 0.22689

24 1 0.231 0.63087 1 1.466 0.22594

25 1 0.954 0.32868 1 0.269 0.60374

26 1 5.595 0.01801 * 1 0.463 0.49606

27 1 0.450 0.50239 1 3.515 0.06081

28 1 2.687 0.10119 1 4.696 0.03023 *

29 1 6.081 0.01367 * 1 0.028 0.86797

30 1 6.794 0.00915 ** 1 0.250 0.61731

31 1 0.229 0.63260 1 1.012 0.31444

32 1 0.017 0.89563 1 0.358 0.54954

33 1 1.099 0.29447 1 0.013 0.90782

34 1 1.753 0.18544 1 0.003 0.95455

35 1 3.164 0.07528 1 0.148 0.70059

36 1 3.621 0.05705 1 0.211 0.64597

37 1 0.224 0.63598 1 0.767 0.38105

<= .05, ** <= .01, *** <= (.05 / 37)
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